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SUMMARY 

Acylcuprates obtained by carbonylation of R(CN)CuLi cuprates (R = t- 
Bu, set-Bu) at low temperature are effective in the direct nucleophilic 
1,4-acylation of a,S-unsaturated ketones and aldehydes. The R = t-Bu 
reagent is sufficiently stable so that it can be used even at room 
temparature. The R = set-Bu reagent is best used at -110°C. 

In a previous 
1 

communication we reported a new procedure for the 

direct nucleophilic 1,4-acylation of a,S-unsaturated ketones and aldehydes. 

In these syntheses the carbonylation at atmospheric pressure of "higher 

order" cuprates of type "R2(CN)CuLi2 112 was carried out at -llO°C in a 

4:4:1 (by volume) THF, diethyl ether, pentane mixture. A short time later, 

an equimolar (based on Cu) amount of the a, S-unsaturated substrate was 

added. The yields of 1,4-acylation products ranged from 65-85% for R = n- 

But set-Bu and t-Bu. 

The 1:l R2(CN)CuLi2/a,B-unsaturated substrate ratio used followed 

standard cuprate methodology, 2 but this, of course, wastes one-half of the 

organic groups charged. In exploratory reactions yields greater than 100% 

(based on Cu) were obtained when a 1:2 R2(CN)CuLi2/a,S-unsaturated 

substrate ratio was used. This led us to examine the carbonylation of 1:l 

reagents, i.e., of "R(CN)CuLi". 3 The results of these experiments are 

reported here since they involve useful new preparative chemistry. 

A typical reaction utilizing the t-C4Hg(CN)CuLi is described. A 300 

mL three-necked flask was charged with 7.26 mmol of CuCN (nitrogen 

atmosphere). Degassed THF (20 mL) was added and the mixture was cooled to 

-78OC. t-Butyllithium (1.78N in hexane, 7.12 mmol) was added in portions. 

The resulting yellow suspension was allowed to warm to O°C. The colorless 

solution which formed was cooled to -78'C again and another 180 mL of THF 

was added. Subsequently, CO was bubbled through a gas dispersion tube into 

the solution for 30 min. (Method I). While the CO stream was continued, 

the now yellow solution was allowed to warm to O°C. Cyclohexen-2-one (7.02 

mmol) then was added, slowly by syringe. The reaction mixture was 

maintained at O°C for 90 min. under CO. Following warming to room 
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temperature, the reaction mixture was treated with 75 mL of 1:lO 

NH40H/NH4C1. The blue aqueous layer was extracted with diethyl ether. The 

combined organic phases were dried, concentrated and analyzed by GC. The 

desired product, 3-pivaloylcyclohexanone, was present in 94% yield, based 

on cyclohexen-2-one. It was identified by comparison of its IR and NMR 

spectra with those of an authentic sample. 
1 

Table I gives the results of 

other experiments with the t-C4Hg(CN)CuLi/C0 reagent. In some cases the 

addition of the a,H-unsaturated substrate and its subsequent reaction with 

the pivaloylcuprate solution were carried out at -2ooc. However, it was 

found that good product yields could be obtained even when the 

pivaloylcuprate solution was warmed to room temperature immediately before 

the a,@-unsaturated substrate was added, even though the reagent mixture 

became grey and heterogeneous at this temperature. For example, addition 

of cyclohexen-2-one to the t-C4Hg(CN)CuLi/C0 solution after it had been 

warmed to room temperature, followed by a reaction time of one hour at room 

temperature gave the expected 1,4-diketone in 88% yield. Thus the t- 

C4Hg(CN)CuLi/C0 reagent is quite stable and gives in general, better 

yields, exclusively, of the 1,4 acylation product than does the (t- 

C4Hg)2(CN)CuLi2/C0 system which was reported earlier. 1 

In an alternate procedure (Method II), the t-C4Hg(CN)CuLi reagent 

solution (cooled to -78“C) was cannulated into a 4:4:1 THF, Et20, pentane 

mixture at -110°C which was being kept saturated with a stream of CO. The 

CO stream was maintained for another 2 hours at -llO°C after the addition 

was complete. The a,@-unsaturated substrate then was added and the 

reaction mixture stirred at -1lO'C for 90 min.; work-up as described above 

followed. This procedure was especially useful in the 1,4-acylation of the 

more reactive a,&unsaturated electrophiles whose reactions in Method I 

gave 1,4-alkylated by-products, e.g. crotonaldehyde, methyl vinyl ketone 

and 5,6-dihydro-2H-pyran-2-one (Table 1). 

The set-C4Hg(CN)CuLi reagent is less stable. Best results were 

obtained using Method II, in which the cuprate reagent, prepared at -78OC, 

was carbonylated at -llO°C for 30 min., with subsequent addition of the 

a,&unsaturated substrate at -1lOOC. Excellent yields of 1,4-diketones 

were thus obtained (Table I) and the yield of the 1,4-ketoaldehyde prepared 

was good. In experiments in which the see-C4Hg(CN)CuLi/C0 reagent was 

allowed to warm to higher temperatures after its preparation at -llO°C 

before the reaction with the a,@unsaturated substrate was carried out (at 

the higher temperature for 90 min.) the 1,4-diketone yields were much 

lower: 44% in a reaction with cyclohexen-2-one at -20°C, 21% in a reaction 

at O°C. 
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Neither Method I nor II was successful in the case of n-C4H9(CN)CuLi. 

Even when the carbonylation and subsequent reaction with cyclohexen-2-one 

were carried out at -llOOC, the only product (80% yield) was 3-n- 

butylcyclohexanone, the alkylation product. Addition of 2 molar 

equivalents of N,N,N' ,N'-tetramethylethylenediamine to the cuprate reagent 

prior to carbonylation did not change this result. In order to effect 

direct nucleophilic 1,4-acylation of a,B-unsaturated ketones and aldehydes 

with a primary acylcuprate, the less efficient n-R2(CN)CuLi2/C0 procedure' 

must be used. 

The apparent stability of the R(CN)CuLi/CO reagents which we have 

studied decreases in the order R = t-C4H9>sec-C H >n-C H 
49 49' At one extreme, 

the pivaloylcuprate appears to be stable up to room temperature. At the 

other extreme, at first sight, the n-C4Hg(CN)CuLi/C0 reagent is not formed 

at all. A possible explanation of these observations is that the 

carbonylation is a reversible process (eq.1) and thus the a,+unsaturated 

R(CN)CuLi + CO & RC(O)(CN)CuLi (I) 

substrate has the option of reacting with either 1 or 2. - - When R is a bulky 

secondary or tertiary alkyl group, reaction of the electrophile with 1 is - 
hindered and reaction with the less bulky 2 is favored. When R is not 

bulky, as in the case of R = n-C4Hg, then reaction with 1 is preferred. 

This is an explanation in terms of kinetic factors. We are seeking 

information on the position of the postulated equilibrium in eq. 1 by means 

of 1 H and l3 C NMR studies of these systems. 
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